Generating Scaled Replicas of Real-World Complex Networks

CHRISTIAN L. STAUDT, MICHAEL HAMANN, ILYA SAFRO, ALEXANDER GUTFRAIND, HENNING MEYERHENKE

The 5th International Workshop on Complex Networks & their Applications Nov 30 - Dec 02 2016 Milano

Our Contribution: We...

- introduce the ReCoN (for Replication of Complex Networks) generator
- experimentally evaluate (in comparison with competing generative models)
 - generating realistic randomized replicas
 - generating realistically scaled-up versions

Motivation

Engineering network algorithms? Consider this argument... [J. Kunegis, http://konect.uni-koblenz.de/]

- task: determine wether algorithm X performs better than algorithm Y
- result: X performs better on 6 out of 10 datasets
- null hypothesis: X and Y win with equal probability on any data set
- under the null hypothesis, probability of obtaining the result above is 17 %
- 65 datasets needed for statistically significant result (assuming a p-value of ≤ 0.05) for a 60 % outcome

Why is realism important?

 algorithm performance may strongly depend on structural properties of the network

Why synthetic networks?

- enough relevant real network data may be hard to obtain, proprietary, sensitive, or at wrong scale
- synthetic graphs often necessary to test scalability and effectiveness of algorithms

Scenarios for ReCoN

A: Obfuscation

 given a real network that cannot be freely shared, generate a randomized/ obfuscated replica with (statistically) similar properties

B: Scaling

• given a real network with n nodes, generate a scaled-up network with x n nodes with realistically scaled properties

Performance Goal

generate millions of edges quickly in practice

Running Time Replication

Are algorithm running times obtained on synthetic graphs representative for those on real-world inputs?

Example: Scaled Replica

scale-2 replica produced by ReCoN generator sample from scale-200k replica produced by ReCoN generator

original network and community structure

2 copies

intra-community edges

randomized intra-community edges

inter-community edges

randomized inter-community edges

scale-2 replica

Conclusion

- synthetic networks are often needed in experimental algorithmics -> generative network models
 - realism is important since algorithm performance may strongly depend on structural properties
 - real data may be unavailable or unsuitable
- we show experimentally that among a wide set of competing generative models, the ReCoN generator is
 - best suited for creating a randomized synthetic network that closely replicates structural properties of the original network
 - best suited for creating a realistically scaled-up replica of an input network
 - scalable to millions of edges with our fast implementation

ReCoN Implementation

 implementation based on NetworKit, an open-source tool suite for the analysis of large networks

[Staudt, Sazonovs, Meyerhenke '16 in Network Science, to appear]

Get started at https://networkit.iti.kit.edu

Generating Scaled Replicas of Real-World Complex Networks

Credits

CHRISTIAN L. STAUDT data science consultant <u>clstaudt.me</u>

MICHAEL HAMANN Karlsruhe Institute of Technology i11www.iti.kit.edu

ILYA SAFRO

Clemson University

people.cs.clemson.ed

u/~isafro/

ALEXANDER GUTFRAIND University of Illinois / Uptake gutfraind.com

HENNING MEYERHENKE Karlsruhe Institute of Technology parco.iti.kit.edu

